

Strengthening synergies between Aviation and Maritime in the area of Human Factors towards achieving more efficient and resilient MODES of transportation.

Training Package *Human Factors Assessment*

SAFEMODE-CBHF-M1

This project has received funding from European Union's Horizon 2020 Research and Innovation Programme under Grant Agreement N°814961.

1

Presentation contents

1. The Human Factor	2. Mechanisms of Performance Degradation	3. Benefits from Neuroscience
4. Mental Workload Assessment	5. Training Assessment	6. Stress Assessment: Signal Fusion

In the modern world, humans work in **increasingly complex environments** that place high demands on our mental capabilities.

Operator's mental states can be negatively affected by **inadequate training**, **unrealistic schedules**, etc. so then contributing to accidents.

Human performance is not constant but it depends on the actual psychophysical state of the operator.

Investigate the cognitive and physiological factors underlying the operator's states would pave the way for **adaptive interventions** and **enhanced human-machine interaction**.

The capability of characterising and measuring the Human Factors would provide great benefit for improving Human-Machine Interaction and Safety, especially in operational environments.

Presentation contents

1. The Human Factor	2. Mechanisms of Performance Degradation	3. Benefits from Neuroscience
4. Mental Workload Assessment	5. Training Assessment	6. Stress Assessment: Signal Fusion

Attention (Visual) Tunnelling

The Pilot Flying became **too focused** on the landing and started to **do not paying attention** to the surrounding environments and other information (e.g. Second Pilot warning about the landing gear).

g-LOC

Most of the people will face changes in vision such as **grayout** or **blackout** at 4.1Gz~4.8Gz, and without any equipment or techniques to handle rapid acceleration from 1Gz to 6Gz, or constant exposure to over 6Gz, they will go under a G-LOC state within 5 seconds.

Stress is a physiological response to mental, emotional, or physical challenges, determined by the **balance between the perceived demands** from the environment and the **individual's resources** to meet those demands.

(some) STRESSORS			
Work Environment	Time pressure		
Task Demand	Unpredictable events		
Operating Procedures Conflicting Information			

Mental workload reflects the **amount of cognitive capacity needed to fulfil task performance** and it is one of the **most ubiquitous constructs** in cognitive ergonomics, as it has a direct impact on how humans perform in all types of tasks.

This drives the need to better understand the factors and mechanisms of mental workload.

(Borghini et al., 2014, Neurosci Biobeh Rev) (Seet, 2020, Hand of NeuroEng)

Reversed U-shaped relationship

Theoretical frameworks posit that cognitive performance relies on a **central cognitive architecture**, which can be flexibly utilised to do a variety of tasks.

This relates to a psychological concept known as **executive control**—a **core system** that manages broad abilities to focus attention, ignore distractions, maintain and manipulate complex information in mind (i.e. working memory), and to coordinate performance between multiple tasks: **fronto-parietal control network** comprising the prefrontal cortex interacting with the posterior parietal cortex.

General-capacity theories assume that there is a single undifferentiated capacity from which all cognitive processes compete for resources.

On the contrary, the **Multiple Resource model** argues that there are separate sub-pools of resources for different domains of mental processing (e.g. 'visual resources' for visuospatial processing, 'verbal resources' for verbal processing).

There appears to be support for a **hybrid viewpoint**: instead of a linear trade-off that would indicate a common resource pool, the curvilinear relation suggests that the **two tasks share some but not all resources**.

Greater domain overlap between the tasks (e.g. both being visualbased tasks) would produce higher dual-task interference, translating to a **more linear** AOC curve.

(Sperling and Melchner, 1978, Science) (Wickens, 2002, Theor issues Ergon Sci)

Apart from task demands, mental workload is also affected by various secondary factors.

First are external supports such as **task aides and automated tools** (e.g. unreliable system vs. manual control). This highlights that having external supports are not necessarily beneficial, and may miscarry and place additional mental burdens if found to be ineffective.

Second is subjective **appraisals of performance and motivation**. People experience greater workload after an instance of failing to meet task demand, in turn causing performance to decline further. Positive feedback can have the reverse effect of reducing perceived workload and improving performance.

Third are user **experience and skills**. Expertise with a task can reduce the workload required to perform a given task ('proceduralisation'). Nonetheless, too much experience can be disadvantageous too. Working on the same tasks without increasing task demands can induce underload.

SAFEMODE

Optimise Mental Workload vs. Performance

Mental workload depends on both individual and task factors. From this theoretical perspective, we can identify **two simultaneous approaches** to optimise human productivity hence manage the Mental Workload:

- (i) **Tailoring** task demands to individual capability.
- (ii) **Training** individuals to handle complex demands.

The **first approach** is an **objective measure of mental workload** is useful to **track changes** in mental workload as the task progresses, so that task requirements can be adjusted to optimal levels.

The **second approach** is to improve individuals' cognitive facilities to **tolerate greater task demands**. Pretask training be made more effective if the **training environment and practice tasks are similar** to those at the actual workplace, such as using immersive virtual reality training.

Presentation contents

1. The Human Factor	2. Mechanisms of Performance Degradation	3. Benefits from Neuroscience
4. Mental Workload Assessment	5. Training Assessment	6. Stress Assessment: Signal Fusion

SAFEMODE

The following measures are widely used for monitoring operator's mental state:

- (1) System- and Behavioural-based measures Deviations from the declared Flight Plan (FP) position, Reaction Time, detected and solved conflicts.
- (2) Subjective-based measures Questionnaires about perceptions and feelings of the Operator before, during, and\or after the execution of the tasks.

3 Neurophysiological measures - Biosignals are recorded and analyzed in order to highlight variations in human mental states.

Arrest Ar	WASA Task Load Index Harard Standards NeXA Task Load Index (TLR) method assesses indexto for each part road, n21 gradators on the scale. Image: Standard St		
	Performance in the comparison of the second data provide in the second data provide intervent in the second data provide second dat	he how severe you feel your disease state is with a ch (1) on the line below.	

NASA-Task Load Index (TLX) is a multi-dimensional rating procedure that derives an overall workload score based on a weighted average of ratings on six subscales:

- Mental Demands
- Physical Demands
- Temporal Demands
- Own Performance
- ✤ Effort
- Frustration.

	BEHAVIOURAL	SYSTEM LOG	SUBJECTIVE	NEUROPHYSIOLOGICAL
Temporal resolution			8	I
Operator-dependent	\checkmark		8	I
Easy to use	8	8	Ø	8
Objective measure	\checkmark	Ø	8	Ø
Time for setting-up			Ø	•
Real-time tracking	Ð	•	8	I
Interruptive	Ø		8	
Comfortable	 Image: A start of the start of		Ø	
Insight information	8	8	8	Ø

The Rationale

Passive-BCI

Experimental Setting: Example

- *Electroencephalography* (EEG) refers to the recording of the brain's spontaneous electrical activity over a period of time, as recorded from multiple electrodes placed on the scalp.
- Applications generally focus on the spectral content of EEG, that is, the type of neural oscillations (popularly called "brain waves or rhythms") that can be observed in EEG signals.

EEG pre-processing: Example

• *Electrocardiography* (ECG) is the process of recording the electrical activity of the heart. The electrodes detect electrical changes on the skin that arise from the heart muscle's electrophysiological pattern of depolarizing and repolarizing during each heartbeat.

SAFEMODE

ECG pre-processing: Example

Rate = fs / ibi * 60 [bpm]

 Galvanic Skin Response (GSR) is the electrical measurement of the Skin Conductance (SC). Skin resistance varies with the state of sweat glands. Sweating is controlled by the sympathetic nervous system. If the sympathetic branch of the autonomic nervous system is highly aroused, then sweat gland activity also increases, which in turn increases SC.

Presentation contents

1. The Human Factor	2. Mechanisms of Performance Degradation	3. Benefits from Neuroscience
4. Mental Workload Assessment	5. Training Assessment	6. Stress Assessment: Signal Fusion

Real-Time MWL Assessment

CS Fondazione Santa Lucia - Progetto Brainshield -

SANTA LUCIA

NEUROSCIENZE E RIABILITAZIONE

leniaAermacchi

A Finmeccanica Company

nina

eference aeronautiqu

(Borghini, 2011, IJASM) (Aricò et al., 2016, Frontiers)

This project has received funding from European Union's Horizon 2020 Research and Innovation Programme under Grant Agreement N°814961.

SAPIENZA UNIVERSITÀ DI ROMA

consulting&research

Example: ATM Case Study (1/2)

	Easy vs Medium	Medium vs Hard	Easy vs Hard
ATC Experts	5.2*10 ^{.9}	0.854	8.9*10 ⁻⁵
ATC Students	2.6*10 ⁻⁵	0.593	7.5*10 ⁻⁵

Example: ATM Case Study (2/2)

	Easy vs Medium	Medium vs Hard	Easy vs Hard
ATC Experts	0.02	0.01	0.003
ATC Students	0.04	0.04	0.003

(Aricò, Borghini et al., 2016 Prog Brain Res)

Expertise Evaluation

Air Force: Experts vs. Students

The Placing of the EEG electrodes on the pilot scalp

During the entire flight simulation, the pilots monitoring has been done from the outside by the remote-control station

(Borghini 2012 – IJASM)

Experts vs. Students: Results

Technology Comparison

Avionic Technology Testing

Cognitive neurometrics can be used as a reliable measure of the user's mental workload, being a valid indicator for the comparison and testing of different avionic technologies.

(Borghini et al., 2015, IEEE EMBC)

CRM Estimation

CRM\TRM Assessment

(Toppi, Borghini et al., 2016, PlosONE)

For the purpose of optimizing the Crew Resource Management (CRM), the interaction has been investigated by simultaneous recordings of brain signals during flight simulations and real jumps.

Presentation contents

1. The Human Factor	2. Mechanisms of Performance Degradation	3. Benefits from Neuroscience
4. Mental Workload Assessment	5. Training Assessment	6. Stress Assessment: Signal Fusion

LIMITATIONS

- Standardised training schedules that do not accommodate individual differences.
- The training is generally evaluated by the supervision of experts and it is easy to understand how this approach is <u>highly operator</u>.
- No quantitative training assessment in terms of cognitive resources.

AIMS

 <u>Tailoring and objective and information</u> are needed, especially regarding the amount of available cognitive resources (<u>Spare Capacity</u>) and <u>workload level</u> reached during the specific operative conditions.

Example: ATPL / CBT Comparison

ATPL

(Integrated Air Transport Pilot Licence)

Tasks/ Maneuvers Assessment

CBT (Competency Based Training) Competencies Acquisitions Assessment

A subject can be defined "**Trained**" when his/her correct execution of the task requires less physical and cognitive resources and effort.

As consequence, the **available spare capacity** for emergencies and unexpected events will be greater and the safety level higher.

Training Assessment: Lab study

Current effect: F(5, 45)=14,046, p=,00000

93

9 91

1.02

Current effect: F(5, 45)=14.248, p=.00000

Inappropriate training assessment might have either high social costs and economic impacts, especially in high risks categories, such as Pilots, Air Traffic Controllers, or Surgeons.

In fact, even if the task is accomplished achieving the maximum performance, by the standard training assessment methods, it would not be possible to gather and evaluate information about cognitive resources available for dealing with unexpected events or emergency conditions.

We proposed a neurometric based on a machine learning algorithm to quantify the user's training level within each session by combining both the behavioral and cognitive abilities between consecutive sessions.

The results demonstrated that the proposed methodology and neurometric could quantify and track the users' progresses, and provide the Instructor information for a more objective evaluation and better tailoring of training programs.

(Borghini et al., 2017, Frontiers Neuro)

Performance

Performance

T1'

T3'

T5'

Cross-validation

T7'

T12'

T9'

- The Human Factors are crucial for Safety: direct relation between operator's mental states and performance.
- Neuroscience and technology progress can provide useful tools to mitigate risky conditions: operator's mental states monitoring to allow support\intervention by adaptive automations.
- We can estimate objective information from the operator's neurophysiological signals: the combination of different data can provide a more accurate characterization of the phenomenon under investigation.

Presentation contents

1. The Human Factor	2. Mechanisms of Performance Degradation	3. Benefits from Neuroscience
4. Mental Workload Assessment	5. Training Assessment	6. Stress Assessment: Signal Fusion

ATCO's Stress Assessment

Human Performance neurometrics toolbox for highly automated systems design

(Borghini et al., 2020, Sci Rep)

The overall stress perception **decreased significantly** (p<0.0001) between the beginning and the end of the ATM scenario both for the ATC Students and SMEs

Subjective Measures - Efficiency

The SMEs' assessment regarding the ATCOs' Efficiency (p=0.0008) reported **significant decrement** when the stressful events started to the end of the ATM scenario.

The Fusion-based Stress Index reported significant effect (p=0.00009) across the ATM scenario.

The stress level **kept increasing after the highest stressful phase** (SLOT#3) rather than decreasing as the subjective stress perception.

- A multimodal approach would overcome the current limitations in assessing the operator's internal state and provide a more accurate characterization and assessment of the operator's Human Factors.
- Closed-Loop between Humans and Machines in order to improve the interactions and feedbacks to better manage the control system(s) and enhance the safety under all conditions.

Thank you for your attention

<u>Session contributors</u> Gianluca Borghini | gianluca.borghini@uniroma1.it

